Critical Dimension in the Semiparametric Bernstein von Mises Theorem

Скачать insert_drive_file Ссылка language

Авторы:

Maxim Panov, Vladimir Spokoiny

Издание:

Proceedings of the Steklov Institute of Mathematics, 2014, Vol. 287, pp. 232–255

Абстракт:

The classical parametric and semiparametric Bernstein–von Mises (BvM) results are reconsidered in a nonclassical setup allowing finite samples and model misspecification. In the parametric case and in the case of a finite-dimensional nuisance parameter, we establish an upper bound on the error of Gaussian approximation of the posterior distribution of the target parameter; the bound depends explicitly on the dimension of the full and target parameters and on the sample size. This helps to identify the so-called critical dimension pn of the full parameter for which the BvM result is applicable. In the important special i.i.d. case, we show that the condition “p3 n/n is small” is sufficient for the BvM result to be valid under general assumptions on the model. We also provide an example of a model with the phase transition effect: the statement of the BvM theorem fails when the dimension pn approaches n1/3.

Ключевые слова: Аппроксимация

VK
LinkedIn

Контактная информация

location_on  117246, Москва, Научный проезд, д. 17, 15 этаж

phone  +7 (495) 669-68-15

mail_outline  info@datadvance.ru

Связаться navigate_next Реселлеры navigate_next

Подписаться на рассылку