Exact Inference for Gaussian Process Regression in Case of Big Data with the Cartesian Product Structure

Скачать insert_drive_file Ссылка language

Авторы:

Belyaev Mikhail, Burnaev Evgeny, Kapushev Yermek

Издание:

ICML 2014 workshop on New Learning Frameworks and Models for Big Data, Beijing 2014

Абстракт:

In this paper a new approach for Gaussian Process regression in case of factorial design of experiments is proposed. It allows to efficiently compute exact inference and handle large multidimensional data sets. This functionnality is implemented in MACROS technology.

Ключевые слова: Планирование эксперимента, Аппроксимация, Гауссовские процессы

VK
LinkedIn

Контактная информация

location_on  117246, Москва, Научный проезд, д. 17, 15 этаж

phone  +7 (495) 669-68-15

mail_outline  info@datadvance.ru

Связаться navigate_next Реселлеры navigate_next

Подписаться на рассылку