Multi-Objective Programming: Adaptive Surrogate-Based Approach with Chebyshev Scalarization

Скачать account_balance Скачать insert_drive_file Ссылка language

Авторы:

A. Pospelov

Издание:

Procs of Workshop on Advances in Simulation-Driven Optimization and Modeling, ASDOM 2013, August 9-11, 2013, Reykjavik University, Iceland

Абстракт:

Optimizing computationally expensive models we usually have to submit to strict limitations on amount of evaluations of models. These limitations become especially pressing in multi-objective optimization. A prominent approach to deal with such situations is surrogate-based optimization, where cheap synthetic models are used to approximate expensive models. In this talk we present a new surrogate-based multi-objective optimization algorithm based on a generalization of probability of improvement method.

Ключевые слова: Аппроксимация, Оптимизация, Многокритериальная оптимизация, Оптимизация на основе метамоделей

VK
LinkedIn

Контактная информация

location_on  117246, Москва, Научный проезд, д. 17, 15 этаж

phone  +7 (495) 669-68-15

mail_outline  info@datadvance.ru

Связаться navigate_next Реселлеры navigate_next

Подписаться на рассылку