Prediction of Ship Roll Motion using Machine Learning-based Surrogate Model

Скачать insert_drive_file Ссылка language

Авторы:

Young-Rong Kim, Jun-Bum Park, Serng—Bae Moon

Издание:

J . Navig. Port Res. Vol. 42, No. 6 : 395-405, December 2018

Абстракт:

Seakeeping safety module in Korean e-Navigation system is one of the ship remote monitoring services that is employed to ensure the safety of ships by monitoring the ship's real time performance and providing a warning in advance when the abnormal conditions are encountered in seakeeping performance. In general, seakeeping performance has been evaluated by simulating ship motion analysis under specific conditions for its design. However, due to restriction of computation time, it is not realistic to perform simulations to evaluate seakeeping performance under real-time operation conditions. This study aims to introduce a reasonable and faster method to predict a ship’s roll motion which is one of the factors used to evaluate a ship’s seakeeping performance by using a machine learning-based surrogate model. Through the application of various learning techniques and sampling conditions on training data, it was observed that the difference of roll motion between a given surrogate model and motion analysis was within 1%. Therefore, it can be concluded that this method can be useful to evaluate the seakeeping performance of a ship in real-time operation.

Ключевые слова: Судостроение, Машинное обучение

VK
LinkedIn

Контактная информация

location_on  117246, Москва, Научный проезд, д. 17, 15 этаж

phone  +7 (495) 669-68-15

mail_outline  info@datadvance.ru

Связаться navigate_next Реселлеры navigate_next

Подписаться на рассылку