Asymptotically Optimal Method for Manifold Estimation Problem

Скачать account_balance Скачать insert_drive_file

Авторы:

Kuleshov A., Bernstein A., Yanovich Yu.

Издание:

Abstracts of the 29-th European Meeting of Statisticians, 2013

Абстракт:

Manifold learning is considered as manifold estimation problem: to estimate an unknown well-conditioned q-dimensional manifold embedded in a high-dimensional observation space given sample of n data points from the manifold. It is shown that the proposed Grassmann & Stiefel Eigenmaps algorithm estimates the manifold with a rate n to the power of −2/(q+2), where q is dimension of the manifold; this rate coincides with a minimax lower bound for Hausdorff distance between the manifold and its estimator (Genovese et al. Minimax manifold estimation. Journal of machine learning research, 13, 2012).

Ключевые слова: Анализ данных, Снижение размерности

VK
LinkedIn

Контактная информация

location_on  117246, Москва, Научный проезд, д. 17, 15 этаж

phone  +7 (495) 669-68-15

mail_outline  info@datadvance.ru

Связаться navigate_next Реселлеры navigate_next

Подписаться на рассылку